Locally Adaptive Bayesian Multivariate Time Series

نویسندگان

  • Daniele Durante
  • Bruno Scarpa
  • David B. Dunson
چکیده

In modeling multivariate time series, it is important to allow time-varying smoothness in the mean and covariance process. In particular, there may be certain time intervals exhibiting rapid changes and others in which changes are slow. If such locally adaptive smoothness is not accounted for, one can obtain misleading inferences and predictions, with over-smoothing across erratic time intervals and under-smoothing across times exhibiting slow variation. This can lead to miscalibration of predictive intervals, which can be substantially too narrow or wide depending on the time. We propose a continuous multivariate stochastic process for time series having locally varying smoothness in both the mean and covariance matrix. This process is constructed utilizing latent dictionary functions in time, which are given nested Gaussian process priors and linearly related to the observed data through a sparse mapping. Using a differential equation representation, we bypass usual computational bottlenecks in obtaining MCMC and online algorithms for approximate Bayesian inference. The performance is assessed in simulations and illustrated in a financial application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally adaptive Bayesian covariance regression

Multivariate time series data arise in many applied domains, and it is often crucial to obtain a good characterization of how the covariance among the different variables changes over time. Certainly this is the case in financial applications in which covariance can change dramatically during times of financial crisis, revealing different associations among assets and countries than occur in a ...

متن کامل

Locally adaptive factor processes for multivariate time series

In modeling multivariate time series, it is important to allow time-varying smoothness in the mean and covariance process. In particular, there may be certain time intervals exhibiting rapid changes and others in which changes are slow. If such time-varying smoothness is not accounted for, one can obtain misleading inferences and predictions, with over-smoothing across erratic time intervals an...

متن کامل

Benchmarking Bayesian neural networks for time series forecasting

We report a benchmarking of neural networks and regression techniques in a time series forecasting task. The estimation errors, computing costs and additional information obtained by Bayesian neural networks are compared with other neural network models and with Multivariate Adaptive Regression Splines (MARS). The Mackey Glass time series in chaotic regime was used to generate the two data sets...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

استفاده از آنتروپی شانون در پیش‌پردازش ورودی شبکه بیزین جهت مدل‌سازی سری‌های زمانی

Selecting appropriate inputs for intelligent models is important due to reduce costs and save time and increase accuracy and efficiency of models. The purpose of this study is using Shannon entropy to select the optimum combination of input variables in time series modeling. Monthly time series of precipitation, temperature and radiation in the period of 1982-2010 was used from Tabriz synoptic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013